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A METHOD FOR COMPUTING TEE INTERACTION OF
WO SPHERICAL BLAST WAVES

ABSTRACT

The artificial viscos!ty method of von Neumann and Richtmyer for numerical
solution of the partial differential equations of fluid flow is used to obtain
a scheme for the numerical calculation of the interactiorn of two spherical
blast waves in air.
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LIST OF SYMBOLS
SUPERSCRIPTS

n refers to the time index.

o refers to time zero.

SUBRSCRIPTS
k refers to the R space index.
2 refers to the Z space index.
a refers to charge a.
b refers to charge b.

GREEK

a = an adjustable constant to steepen shock fronts.

p = density.
ROMAN

¢ = sound velocity.

E = specific internal energy.

or dr
3R 3z
J = .
oz oz
3R oz
oP oP
SR 3z
K = .
0z oz
3R 37
oP )
oR oz
L = ‘
or or
oR 3z
P = pressure.
P=p+q.
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R

= Ef__L_L__
_ 9z(t,R,2)
t

0 if g% <0 °

Eulerian coordinate perpendicular to the z-axis of symmetry.

initial radius of charge a.

initial radius of charge b.

Lagrange coordinate perpendicular to the Z-axis of symmetry.

increment of Lagrange coordinate R.
time.
increment of time.

or(t,R,2)

r component of velocity.

z component of velocity.

po ro Jo.

Eulerian coordinate of cylindrical symmetry.

initial axial distance of center of charge a.

initial axial distance of center of charge b.

Lagrange coordinate of cylindrical symmetry.

increment of Lagrange coordinate Z.



INTRODUCTION

Axi-symmetric unsteady compressible flow problems arise extensively in
military technology. Spherical blast waves and their interaction, explosions
in vertically veriable atmosphere, flow past axi-symmetric bodies, high-speed
flow in axi-symmetric hypervelocity guns, shaped-charge gas-metal jet flow=-
all are of importance. The exact solution of the equations governing these
flows which satisfies the appropriate initial and boundary conditions requires
solving a system of non-linear hyperbolic partial differential eyuations in a
two-space and one-time coordinate system, i.e., in three generalized dimensions.
Presently, such exact solutions are not obtainable. The method of character-
istics by which existence of solutions is shown opens the way for a numerical
procedure, but this method requires a series of machine programs that esca-
lates in complexity as the shock and characteristic discontinuity surfaces in
the flow field interact and multiply the nuwber of continuous zones bounded
by discontinuity surfaces.

Von Neumann and Richtmyer proposed a method of numerical integration that
changes the flow equations to the parabolic type. Although the solution is
only approximate, the overall or essential nature of the solution is preserved;
i.e., curves with momentum and energy discontinuities are warped into smooth
but rapidly changing curves. (Stream surface material discontinuities, however,
are not altered.) Therefore, the numerical procedure does not require the
separate treatment of every continuous zone, and numerical solution with today's

computing machines is quite feasible,

This is the method to be examined for calculation of the interaction of
the blast waves from two spherical charges of initial radii rg and rg, since
in this interaction the flow field is replete with discontinuity surfaces that
complicate the problem.



Shock

Interaction
zone

FIGURE 1. BLAST INTERACTION
While this work is the theoretical extension of the experimental work done

in References 1, 2, and 3 on project CLAW, with small modifications, the
analysis can be extended to the other military problems previously listed.
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FLOW BQUATIONS

The continuity equation in particle or Lagrange cylindrical coordinates
for axi-symmetric flow is

or or
oR YA
(1) S (or3) = 0, J = ,
92 oz
SR 37
or
(2) prd = po r 3° = W°.

The momentum conservation equations are

oP oP
ra 3R 32
u r
S'E=-TK,K= )
v oz oz
3R 3Z
(3)ﬁ
oP oP
) 3R Z
v r
LSE: —O—L,L= L4
v dr dr
SR oZ
where
(%) 3
Z
&EV.

The energy conservation equation 1is
E P 3
(5) T " ;g 5% ,
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where, in accordance with Reference L, P is defined by

(6) P=p+gq,

and q represents some artificial dissipative term. In accordance with

References 5 and 7 we put

ra_(f’_;fi(gg)e if §%>o,

P
(M a= 3

The conservation equations above are supplemented by the thermodynamic
equations of state

(8) Pp= P(E:p) P)
c = C(Enp) ’

which are assumed to be known.

The conservation equations above are hydrodynamically exact for q = O;
but for q # 0, the momentum and energy equations are modified, while the

mass equation remains intact.

Equations (2) thru (8) are ten equations with the ten unknowns
(r, z, u, v, E, P, p, q, p, ¢), which are to be determined as functions of
(t, R, 2).

INITIAL AND BOUNDARY CONDITIONS

Two explosive charges of radii r: and rg with centers at z: and zg = -zz
along the Z-axis (Figures 2 and 3), are initiated simultaneously at their
centers, Assuming equilibrium flow and steady state Chapman-Jouget propagation
of the detonation front, the initial explosion state can be calculated either

12
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by the Taylor progressive-wave approximation (Ref. 8), or by the numerical
scheme to be subsequently described. In either case, the equation of state
of the explosion products in chemical and thermodynamic equilibrium must be
specified.

If the detonation process 1s to be calculated by the method outlined in
this article, considering that the media ahead and behind the detonation
front are not the same, the wave fronts must be treated as boundaries moving
with the constant Chapman-Jouget velocity. The wave fronts form cones in
the R, Z, t space (see Figure 2). Behind the detonation fronts the calcu-
lations use the equation of state of the explosion products. Ahead of the

fronts are the undetonated portions of the charges.

When the detonation process is complete and the two explosion gases expand
into the surrounding ambient air, shock waves are formed and propagate in an
outward direction. These shocks eventually collide, and the two flows interact.
The primary area of interest is in the nature of the interaction.

On each t = constant plane (Figure 4) after the shock formation, two types
of domains must be considered -- the explosion gas and air domains. Each has
its own equations of state (8). Although shock surfaces are moving boundaries
of discontinuities, the momentum and energy equations modified by the higher
derivative dissipative term no longer permit this type of discontinuity sur-
faces to exist. In essence, such boundaries are smoothed out and no longer
distinct,

In the Lagrange space (Figures 2 and 4),each explosion gas boundary

remains a fixed circle in each t

constant plane. The equations of these

circles are

2 2
R™ + (2 - za)

"
—
L2}
~—
.

(9)

2

RS + (2 - zb)2 )2

(%,

Across these circles we assume dynamic equilibrium and laminar flow so that
pressures and velocities normal to the stream surfaces are continuous. The

stream surfaces remaln as characteristics across which thermodynamic variables

15



FIGURE 4., t = CONSTANT PLANE
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may be discontinuous, because the mass equation is unaltered in the modified
system of conservation equations. Thus, the chemical composition and equations

of state change abruptly across the explosion gas-air boundary.
COMPUTATIONAL SCHEME

The computational scheme for points interior to boundaries, i.e., points
other than explosion gas-air boundaries, will be that adapted to this particular
problem from Reference 5. The stability of this scheme is shown in Reierence 6.

Let k, £, n be indices corresponding to the coordinates R, Z, t (Figure 5).
Assume that on the t= O or n = 0'th plane all quantities, including

(o} (o}
w, 1 l1=p 1 ,1 r 1 1 J°1 1
k3 43 Tk kg kE b3 kR i
(o] 1 o . (o] (o} o]
w, ,=¢ (w 1 l+w 1 1 +w 1 1 +w 1 1) ,
kot % kg, 45 7 Tk b3 kg, b T ke,
(10)
< 1
MR, = (&R, 1 1 +MR 1 1l +/MR .1 14+ 1 1),
TR A A T
=1 ;
AZk,l-E(AZkl’Z%+Mk;,£%+MK%,Z%+AZK%’£%),
N

are known at the pre-determined poilnts

1 1,2 1 1l and R Z .
Rk-ﬁ, 1-57 "k—5, L5 k, £?“K,2

ol

(This grid spacing in the R, Z space may require changing at some time tn,
depending on the gradients of the solution.) Also, assume that on the
successive (n-%)th and (n-1)th constant time planes, the following quantities
have been computed for all values of the indices k, £ up to k, £:

17



n(t)

| o1
/| (k-é, E-E,ni-l)
| (k,£,n+1]
l
AT T T T T T T T
7’ 1L ® 1 1
F’ | k-3 t-50+3)
t
: (kyzrn"%ﬁ
AT T T T Tl
l(// | (k - é).l - %9 n)
| (k:‘}n)
[}
|
7 ]
- |
<
|
|
{
)
// —————— —_—e e = -
1
-~ (k- 3% -3 n-1)

£(2)

FIGURE 5. INDICES CORRESPONDING TO R,Z,t.

k(R)
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(n-%)th plane

1
(at)*3
1 1
23 N3
1 1’ 1 1

t ’

n-1 n=-1

T,2 > Zk,p °

n-1 n-1 n-1 n-1 n-1

E - N R SR A TS P A S .

1,1 €1 .1
k-E, l-§ k-§, l-§ k-§, .8-5 k"é’ 1-5 k-§, E-§

The computational network sequence is chosen such that on each constant n

plane k varies along constant £ strips.

On the nth plane, r and z are approximated using the velocity definitions of
equation (k).

r 1
n n-1 n - 3 n - 3
rk" rk’t + uk,z Ot s
(11) S ~
n n-1 n - é n - %
zk,t zk,l + vk,t At .
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At half points r, z are obtained by averaging the values at the neighboring
whole points.

r r = l(rn + 0 + e + e )
K - L 1" TVk-1,4-1 k,4-1 * "k-1,2 k,$ ’
-3l-3
(12) < l, n n n
P = 1(z +2 + 2 +z0 ) .
g l,.1 TV %k-1,2-1 k,s-1 k-1,2 k, £
~ - Ll

From these values the gradients of r,z are approximated by the difference

quotients
n rn + I'n I‘n + rn
f or 1 k,4-1 K, £ k-1,4-1 k-1,
(55) = == ( - )
SR’y st-3 Txk-312-3 2 2
Wi, i,
n n n n
3z," 1 S G Y S IS )
() = - (~——2 - )
oR 1 1 MR, 1 2 ?
k-z,l-§ k-§,l-§
(13)
n n n n
(ar)“ ! (rk-l,z " Tk,0 Tk-1,4-1 "t rk,l-l)
By 3y 3 B3, 32 2
S -1
n n n n
(az)" 1 (zk-l,t * 8 Pkel,0-1t zk,z-l)
JZ 1 1 &, 1 1 2 2

which give for the Jacobian
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& ., 1%
1 1 1
k-pb-3 " k-mi-3
> =
(14) 1 1
o ' E (BZ)n (aZ)n
3R 1 1 ‘2 1 1
kK-ml-3 —k-ml-3

The continuity equation (2) now gives the density as

o

1 1

wk - 5,[ - 'é-
k-%1L-3 roo 1 1 1
k-%2-35 k-3t-3

which gives the approximate time derivative of the density as

1 n n-1
- 1 1 1 1
(16) 3p, 2 Pk -50-5 - Pk-50-5
1 1 n-=
k-%20-3 (at) 2

The artificial viscosity term is evaluated from (7):

(a(o : )2 L (o + 2t )
“-3e-3 2 k-hi-3 x-da-}
1 ,n n-1 3
(p + )
1
.« 2 = (a“‘%
(17) 1 1 oo t)
-3 ) c-ta-d
ir (32) >0
k- 3,4 -2
2’ 2
o 1 ()" Z < 0 .
ot 1 1
. k-z,“‘z



The energy conservation equation (5) and the equation of state (8) can be used

to calculate the thermodynamic variables EY 1 1 pn 1 1
k-mb-3" k-5L-3

2

and cn 1 1 by simultaneous solution:
k-mt-3
n- 3
Pn +q 2
1 1 1 1
(;P - (at) " % gh- 1 1 k-54-3 k-3b-3
1 1 1 172
k-g,l--a- k-—2-,l-§ (n )2
A S|
2’ 2
-1
P: 1 p 1 " 1
-5t-3 "3
; ) .
n-1 2 1 1
ﬁ ("7 1) k- 523
(18) k=351t-73
n n n
P 1=P(E 1 s P 1 l) ’
k-%t-3 k-zt-3 k-314-3
n n
c = cfE"
1 1 1 1 P 1)
k-z,l-ﬁ (k-g,ﬂ-ﬁ k-z,l"ﬁ

N

The second and third equations in (18) will differ for air and explosion gas.
P is approximated by

N Ol
~

]
o} -
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With the quantities computed previously, the following can be calculated:

/An 1, 1° (g%)n 1.1 i + (%)n 1, 1 :
k-%2-3 k-3 - k-%4-5
2 n 2
dr, " dz
¥ [(Bi)k 1, 1] M -2 ’
k-mb-3 -]
J
1 1
50 ) k-5t-3 ,
kL1 n 1
2’ 2 c 1 1 (1.25 A 1 l) 2
K - 5,4 - - 3,0 -3
51k =3 3 p
(19)3 n_%
an A T (g%) 1 1 SO
k-%140-3 k-54-3
0225 o 1 1J: 1, 1
D, "pl-z k-mi-3
Cn 1 l=' n--l
S o A 1 L (%%) ? 1
k-§,l—§ k--2',2-§
— 1
3 2
— if (59 >0
‘ w1, 1
2’ )
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Minimizing, the following is obtainead:

If k=1, ¢=1,

(20) p° =MIN(B" , c° ) .
1 1 11 101
2132 313 232

If k=1, £>1,

(21) p? = MIN 7/ B" c? p? 1 1
1 1 11 1 *. -1 )
E,l - 2 %,t - § s z,l - max(k 2 )’t 5)
I k>1,
n _ n n n
(22) T Tkl A A O RS S A S
~3l-3 k-5t-35 k-3L-35 k-lxl-3)

(Note: The calculation above assumes that k increases on constant £ strips.)

Time increments are calculated from

n - ? n
MIN (l.h At , D 1 1 ,
max(k - 2), max($ - §)

n 1 n-é n+%
ot = 5 (at + Ot s

(sl
Ot 2

(]

(5

and the time from

n n=-1 n-—%

t ’-'-t +At )
@ 4,

n+§ n-§ n

t = t + At .

2y
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From these results, K and L are evaluated as:

o |

(

K"

k-1,2-1

k-1,2-1

The momentum conservation equations (3) give the accelerations

(27)

[

( )

k-l,l-l

( )

Sty ,2-1
.

L

3P, 3z,

) (sg)
(Eﬁ k-1,2-1 5§
op, 2 dz,\
(x%) (x3)
By, g1 O k-1, -1
dp\1 dr\?
(x5) ()
3R k-1,2-1 3R k-1,2-1
ap\® ar\?
(sm) (s3)
321, 8-1 3z k-1,8-1

n
r

k-1,2-1
wO
k-1,2-1

K.n

k-1,2-1

Ln

k-1,2-1 k-1,4-1
(o]

Vk-1,2-1

from which the velocities are derived:

(28)

<

(

n o+ é
Ug-1, -1

n'+%
Vk-1, -1

Y-1,2-1

Vk-1, -1

n-:L n
2 at

(3- k-1, 2-1

-3
+ ( ) At
R k- ".1
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This completes the evaluation of all points away from the explosion gas-air
boundaries.

Each network point k, £ is examined to determine if it crosses any
boundary. Proceeding on successive constant Z or £ lines from R = O to
R> 0 (Figure L), starting from a negative Z < (2°

b

- rg) to some positive
Z> (z: + rg), the R = O point has entered the domain of the explosion gas b
whenever

o o o o
2, =Ty, < Zo,z < z, + T, ,

and has entered the domain of the explosion gas a whenever

z° ro < 4 < z° + r
a a = "0, =~ Ta a .

If the R = O point is inside the explosion gas b, along each Zk 2 = Zo P
b L

= constant line, the inequality

2 0,2 0,2
Re,s Erb) = (2, - ) <0

obtained using (9) must hold as Rk,z increases. If the inequality holds, R
is inside the explosion gas b; otherwise, R is in air. Similarly, if the

R = O point is inside the explosion gas a, along each Zk,z = Zo,z = constant
line, if

2 0,2 0,2
Rk,z - [}ra) - (Zo,z - za) <0 .
is satisfied, R is inside a, and outside, if the inequality fails.

At any stage where R traverses an explosion gas boundary into air, J, K,
L are evaluated by taking finite difference quotients acrnss this discontinuity
boundary. While this procedure is not exact, the error committed attenuates
with propagation into the flow field.
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CONCLUSION

The new BRLESC computing muachine of BRL, with addition times in micro-
seconds, can compute very rapidly the three dimensional network required in
the numerical scheme of this problem. While the extensive information-hunting
and reading with the magnetic tape will slow the overall computation considerably,
a total of 52,000 fast core memory will be available soon, making the problem
entirely feasible and the computing time very fast.

ﬁ.c. -m,..,l‘lw

R. C. MAKINO
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